Volumenstrom-Messeinrichtungen Serie VMR

Variante mit rundem Anschlussstutzen

Statischer Differenzdrucktransmitter

Dynamischer Differenzdrucktransmitter

Geprüft nach VDI 6022

Zur Volumenstrom-Messung in Luftleitungen

Runde Volumenstrom-Messeinrichtungen zur Erfassung oder Überwachung des Volumenstromes

- Manuelle Luftstrommessung
- Permanente Luftstrommessung
- Messwerterfassung für Folgeregler oder Luft-Management-System LABCONTROL
- Drucktransmitter zur automatischen Messwerterfassung werkseitig montiert, verschlaucht und verdrahtet
- Gehäuse-Leckluftstrom nach EN 15727, Klasse C

Optionale Ausstattung und Zubehör

- Beidseitig mit Flansch
- Lippendichtung
- Dynamische oder statische Differenzdrucktransmitter

Allgemeine Informationen

Serie		Seite
VMR	Allgemeine Informationen	4.1 – 2
	Bestellschlüssel	4.1 – 4
	Strömungstechnische Daten	4.1 – 7
	Abmessungen und Gewichte – VMR	4.1 – 8
	Abmessungen und Gewichte – VMR-FL	4.1 – 9
	Einbaudetails	4.1 – 10
	Ausschreibungstext	4.1 – 11
	Grundlagen und Definitionen	4.3 – 1

Varianten

Produktbeispiele

Volumenstrom-Messeinrichtung Variante VMR

Volumenstrom-Messeinrichtung Variante VMR, mit Differenzdrucktransmitter

Beschreibung

Detaillierte Informationen zu Drucktransmittern siehe Kapitel K5 - 4.2.

Detaillierte Informationen zum Regelsystem LABCONTROL siehe Katalog Regelsysteme

Anwendung

- Runde Volumenstrom-Messeinrichtungen der Serie VMR zur manuellen oder automatischen Messung von Volumenströmen
- Vereinfachung von Inbetriebnahme, Abnahme und Wartung
- Aufgrund geringer Druckdifferenzen zur dauerhaften Installation geeignet
- Optional mit statischem Differenzdrucktransmitter für Anlagen mit verschmutzter Luft

- VMR: Volumenstrom-Messeinrichtung
- VMR-FL: Volumenstrom-Messeinrichtung beidseitig mit Flansch

Ausführungen

- Verzinktes Stahlblech
- P1: Oberfläche pulverbeschichtet, silbergrau (RAL 7001)
- A2: Edelstahl

Nenngrößen

- 100, 125, 160, 200, 250, 315, 400

Anbauteile

- Dynamischer Differenzdrucktransmitter
- Statischer Differenzdrucktransmitter
- LABCONTROL: Komponenten für Luft-Management-Systeme

Zubehör

- Beidseitig mit Lippendichtung (werkseitig aufgebracht)
- Beidseitig mit Gegenflansch

Besondere Merkmale

- Messgenauigkeit ± 5 %
- Geringe Druckdifferenz von ca. 10 26 % vom gemessenen Wirkdruck

Bauteile und Eigenschaften

- Inbetriebnahmebereites Gerät, bestehend aus den mechanischen Bauteilen und optionalen Drucktransmittern
- Mittelwert bildender Differenzdrucksensor zur Luftstrommessung
- Optionale Drucktransmitter werkseitig montiert und verschlaucht
- Hohe Messgenauigkeit der Volumenströme (auch bei Bogenanschluss mit R = 1D)

Konstruktionsmerkmale

- Rundes Gehäuse
- Rohrstutzen passend für runde Luftleitungen nach EN 1506 oder EN 13180
- Rohrstutzen mit Einlegesicke für Lippendichtung
- Anschlussnippel für Schläuche mit 6 mm Innendurchmesser
- VMR-FL: Flachflansche nach EN 12220

4

Materialien und Oberflächen

Ausführung verzinktes Stahlblech

- Gehäuse aus verzinktem Stahlblech
- Sensorrohre aus Aluminium

Ausführung Pulverbeschichtung (P1)

- Gehäuse aus verzinktem Stahlblech mit Pulverbeschichtung
- Sensorrohe aus Aluminium mit Pulverbeschichtung

Ausführung Edelstahl (A2)

- Gehäuse, Regelklappe und Achse aus Edelstahl 1.4301
- Sensorrohe aus Aluminium mit Pulverbeschichtung

Einbau und Inbetriebnahme

- Lageunabhängig (ausgenommen Geräte mit statischem Differenzdrucktransmitter)
- Anströmbedingungen beachten
- Statischer Differenzdrucktransmitter: Nullpunkt kontrollieren und gegebenenfalls justieren

Normen und Richtlinien

- Hygieneanforderungen nach VDI 6022
- Gehäuse-Leckluftstrom nach EN 15727, Klasse C

Instandhaltung

- Wartungsfrei, da aufgrund der Konstruktion und der verwendeten Materialien keine Abnutzung erfolgt
- Nullpunktabgleich des statischen Differenzdrucktransmitters einmal j\u00e4hrlich empfohlen

Anbauteile: VARYCONTROL Differenzdrucktransmitter für Serie VMR

Bestellschlüsseldetail Differenzdrucktransmitter			
Universal			
B10	Universalregler mit integriertem Differenzdrucktransmitter Fabrikat TROX/Belimo	dynamisch	
BB0	Universalregler mit separatem Differenzdrucktransmitter Fabrikat TROX/Belimo	statisch	

Anbauteile: LABCONTROL Differenzdrucktransmitter für Serie VMR

Bestellschlüsseldetail	estellschlüsseldetail Differenzdrucktransmitter			
EASYLAB				
ELAB EASYLAB TCU3 (Messwerterfassung für das EASYLAB-System)				
TCU-LON-II				
TMO	Elektronischer Regler TCU-LON-II mit LonWorks-Schnittstelle	statisch		

Technische Daten

Nenngrößen	100 – 400 mm
Volumenstrombereich	10 – 1680 l/s oder 36 – 6048 m³/h
Messgenauigkeit	± 5 % vom Messwert
Wirkdruckbereich	Ca. 5 – 250 Pa
Druckdifferenz der Messeinrichtung (Druckverlust)	10 – 26 % vom gemessenen Wirkdruck
Betriebstemperatur	10 – 50 °C

Bestellschlüssel VARYCONTROL

VMR

VMR - P1 - FL / 160 / G2 / B10 / E0 1 3 7 2 4 5 6

1 Serie

VMR Volumenstrom-Messeinrichtung, rund

2 Material

Keine Eintragung: Verzinktes Stahlblech

P1 Oberfläche pulverbeschichtet RAL 7001, silbergrau

Edelstahlausführung **A2**

3 Flansch

Keine Eintragung: Ohne

FL Flansch beidseitig

4 Nenngröße [mm]

100

125

160

200

250

315

400

5 Zubehör

Keine Eintragung: Ohne

D2 Lippendichtung beidseitig

G2 Gegenflansch beidseitig

6 Anbauteile (Differenzdrucktransmitter)

Keine Eintragung: Ohne

B10 Dynamischer Differenzdrucktransmitter

BB0 Statischer Differenzdrucktransmitter

7 Signalspannungsbereich

Für das Istwertsignal

Nur für Anbauteil B10

E0 0 - 10 V

E2 2 - 10 V

VMR/160/D2/B10/E0

Nenngröße Zubehör Differenzdrucktransmitter Istwertsignal

160 mm Lippendichtung beidseitig

Dynamisch

0 - 10 V

Bestellschlüssel LABCONTROL EASYLAB

VMR mit EASYLAB für Messwerterfassung

VMR - P1 - FL / 160 / G2 / ELAB / EC - E0 / ULZ 8 1 2 3 4 5 6 7 9

1 Serie

VMR Volumenstrom-Messeinrichtung, rund

2 Material

Keine Eintragung: Verzinktes Stahlblech

P1 Oberfläche pulverbeschichtet, silbergrau (RAL 7001)

A2 Edelstahlausführung

Keine Eintragung: Ohne

Flansch beidseitig

4 Nenngröße [mm]

100

125

160

200

250

315

400

5 Zubehör

Keine Eintragung: Ohne

D2 Lippendichtung beidseitig

G2 Gegenflansch beidseitig

6 Anbauteile (Regelkomponente)

ELAB EASYLAB TCU3

7 Gerätefunktion

SC Erfassung Zuluft

EC Erfassung Abluft

8 Spannungsbereich Istwertsignal

Spannungssignal 0 - 10 V DC E0

E2 Spannungssignal 2 – 10 V DC

9 Erweiterungen der Anbaugruppe

Option 1: Stromversorgung Keine Eintragung: 24 V AC

Т EM-TRF für 230 V AC

U EM-TRF-USV für 230 V AC, bietet unterbrechungsfreie Stromversorgung

Option 2: Kommunikationsschnittstelle

Keine Eintragung: Ohne

L EM-LON für LonWorks FTT-10A

В EM-BAC-MOD-01 für BACnet MS/TP

EM-BAC-MOD-01 für Modbus RTU M

EM-IP für BACnet IP, П Modbus IP und Webserver

EM-IP mit Echtzeituhr R

Option 3: Automatischer Nullpunktabgleich

Keine Eintragung: Ohne

Z **EM-AUTOZERO** Magnetventil für automatischen Nullpunktabgleich **Bestellschlüssel LABCONTROL EASYLAB**

VMR mit EASYLAB zur Laborabzugsregelung mit externer Ansteuerung (Frequenzumformer)

Т

1 Serie

VMR Volumenstrom-Messeinrichtung, rund

2 Material

Keine Eintragung: Verzinktes Stahlblech

P1 Oberfläche pulverbeschichtet, silbergrau (RAL 7001)

A2 Edelstahlausführung

3 Flansch

Keine Eintragung: Ohne

FL Flansch beidseitig

4 Nenngröße [mm]

100

125

160

200

250

315

400

5 Zubehör

Keine Eintragung: Ohne

D2 Lippendichtung beidseitig

G2 Gegenflansch beidseitig

6 Anbauteile (Regelkomponente)

ELAB EASYLAB Regler TCU3

7 Gerätefunktion

Mit Einströmsensor

FH-VS Regelung Einströmgeschwindigkeit

Mit Frontschieber-Wegsensor

FH-DS Lineare Regelstrategie

FH-DV Sicherheitsoptimierte Regelstrategie

Mit Schaltstufen

für kundenseitige Schaltkontakte

FH-2P 2 Schaltstufen

FH-3P 3 Schaltstufen

Ohne Aufschaltung

FH-F Volumenstrom-Festwert

8 Erweiterungsmodule

Option 1: Versorgungsspannung

Keine Eintragung: 24 V AC

EM-TRF für 230 V AC

U EM-TRF-USV für 230 V AC, bietet unterbrechungsfreie Stromversorgung

> Option 2: Kommunikationsschnittstelle Keine Eintragung: Ohne

EM-LON für LonWorks FTT-10A

L В EM-BAC-MOD-01 für BACnet MS/TP

M EM-BAC-MOD-01 für Modbus RTU

EM-IP für BACnet IP,

Modbus IP und Webserver

R EM-IP mit Echtzeituhr

Option 3: Automatischer Nullpunktabgleich

Keine Eintragung: Ohne

Ζ **EM-AUTOZERO** Magnetventil für automatischen Nullpunktabgleich

Option 4: Beleuchtungsschaltung

Keine Eintragung: Ohne

S **EM-LIGHT Anschlussbuchse** für die Beleuchtung, schaltbar an der Bedieneinheit (nur in Kombination mit EM-TRF oder EM-TRF-USV)

9 Betriebswerte [m³/h oder l/s]

Abhängig von der Gerätefunktion

VS: $\dot{V}_{min} - \dot{V}_{max}$

DS: $\dot{V}_{min} - \dot{V}_{max}$

DV: $\dot{V}_{min} - \dot{V}_{max}$

2P: \dot{V}_1 / \dot{V}_2

3P: $\dot{V}_1 / \dot{V}_2 / \dot{V}_3$

F: V₁

Ergänzende Produkte

Bedieneinheit für Laborabzugsregler zur Funktionsanzeige der Regelung

nach EN 14175

BE-SEG-** Zweizeichenanzeige

BE-LCD-01 40-Zeichen-Display

4

Volumenstrombereiche

Nenngröße	\dot{V}_{Nenn}		V _{min}		C-Wert		Δp _{st}	ΔŸ
Nemigrobe	l/s	m³/h	l/s	m³/h	l/s	m³/h	%	± %
100	95	342	10	36	6,1	22	26	5
125	150	540	15	54	9,7	35	24	5
160	250	900	25	90	15,9	57	22	5
200	405	1458	40	144	25,5	92	19	5
250	615	2214	60	216	39,0	140	17	5
315	1030	3708	105	378	65,0	234	15	5
400	1680	6048	170	612	106,0	382	10	5

C-Wert für eine Luftdichte von 1,2 kg/m³, Δp_{st} in Relation zum gemessenen Wirkdruck

Volumenstromberechnung Berechnungsgrundlagen

- Grundlage für die Berechnung des Volumenstromes ist der gemessene Wirkdruck
- Wirkdruckmessung mit einem elektronischen Manometer oder einem Schrägrohrmanometer
- Luftdichte $\rho = 1.2 \text{ kg/m}^3$

Volumenstromberechnung für eine Luftdichte von 1,2 kg/m³

$$\dot{V} = C \times \sqrt{\Delta p_w}$$

Volumenstromberechnung für andere Luftdichten

$$\dot{V} = C \times \sqrt{\Delta p_{_{W}}} \times \sqrt{\frac{1.2}{\rho}}$$

Berechnungsbeispiel

Vorgaben

- VMR/160
- Δp_w = 100 Pa (Vom Manometer abgelesener Wirkdruck)
- Volumenstrom V in m³/h

Gerätedaten

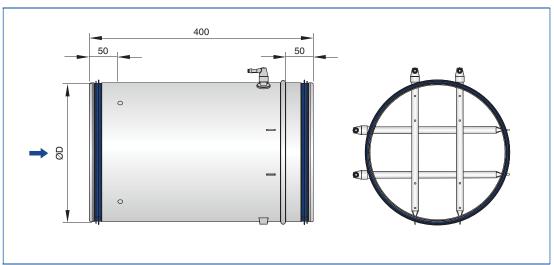
- C-Wert aus Tabelle: $C = 57 \text{ m}^3/\text{h} (15,9 \text{ l/s})$

Rechenverfahren

$$\dot{V} = 57 \times \sqrt{100}$$

$$\dot{V} = 570 \text{ m}^3/\text{h}$$

Beschreibung


- Volumenstrom-Messeinrichtung
- Rohrstutzen zum Anschluss der Luftleitungen

Volumenstrom-Messeinrichtung Variante VMR

Abmessungen

VMR

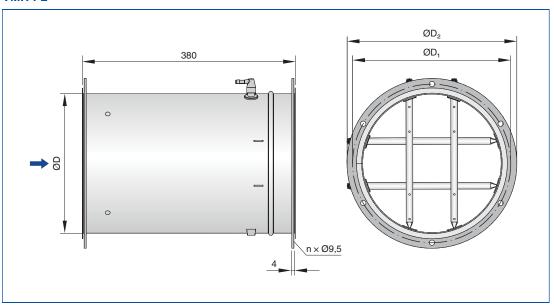
Gewichte ohne Anbauteile

Abmessungen [mm] und Gewichte [kg]

	VMR			
Nenngröße	ØD	m		
	mm	kg		
100	99	0,8		
125	124	1,0		
160	159	1,4		
200	199	1,7		
250	249	2,1		
315	314	2,7		
400	399	3,4		

4

Beschreibung

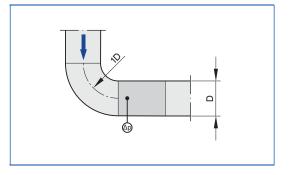

Volumenstrom-Messeinrichtung Variante VMR/.../BB0

- Volumenstrom-Messeinrichtung

 Beidseitig mit Flansch zum lösbaren Anschluss der Luftleitungen

Abmessungen

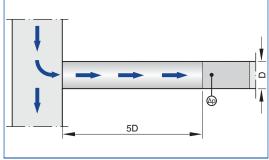
VMR-FL


Abmessungen [mm] und Gewichte [kg]

Nenngröße	ØD	ØD ₁	$\emptyset D_2$	n	Т	m
Neiligiobe	mm			"	mm	kg
100	99	132	152	4	4	1,2
125	124	157	177	4	4	1,5
160	159	192	212	6	4	2,1
200	199	233	253	6	4	2,7
250	249	283	303	6	4	3,3
315	314	352	378	8	4	4,5
400	399	438	464	8	4	5,7

Anströmbedingungen

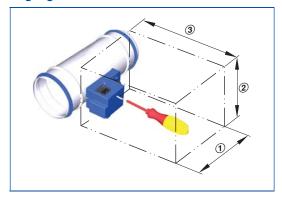
Die Volumenstromgenauigkeit ΔV gilt für gerade Anströmung. Formstücke wie Bögen, Abzweige oder Querschnittsveränderungen verursachen Turbulenzen, die die Messung beeinflussen können. Bei Ausführung von Luftleitungsanschlüssen, wie z.B. dem Abzweig von einer Hauptleitung, ist die EN 1505 zu beachten. Für manche Einbausituationen sind gerade Anströmlängen erforderlich.


Bogenanschluss

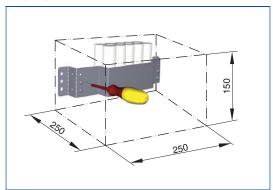
Ein Bogen mit mindestens 1D Krümmungsradius – ohne zusätzliche gerade Anströmlänge vor der Volumenstrom-Messeinrichtung

 hat keinen nennenswerten Einfluss auf die Volumenstromgenauigkeit.

Abzweig von einer Hauptleitung



Das Abzweigen einer Strömung von einer Hauptleitung verursacht starke Turbulenzen. Die angegebene Volumenstromgenauigkeit $\Delta\dot{V}$ ist nur mit mindestens 5D gerader Anströmlänge zu erreichen. Kürzere Anströmlängen sind mit einem Lochblech in der Abzweigleitung vor der Messeinrichtung möglich. Direkter Anschluss, auch mit Lochblech, kann ein instabiles Istwertsignal zur Folge haben.


Platzbedarf für Inbetriebnahme und Instandhaltung

Um die Arbeiten zur Inbetriebnahme und Instandhaltung zu ermöglichen, ausreichenden Bauraum im Bereich der Anbauteile freihalten. Gegebenenfalls sind Revisionsöffnungen in ausreichender Größe erforderlich, sodass die Anbauteile leicht zugänglich sind.

Zugänglichkeit der Anbauteile

Zugänglichkeit der Anbauteile

Separater Bauraum für Befestigung und Zugänglichkeit des Notstromakkumulators (Zubehör LABCONTROL EASYLAB)

Platzbedarf

Anbauteile	1	2	3		
Alibautelle	mm				
Ohne Anbauteile	200	200	200		
VARYC	VARYCONTROL				
Universalregler	250	200	250		
LABCONTROL					
EASYLAB	350	350	400		

Standardtext

Der nebenstehende Ausschreibungstext beschreibt die generellen Eigenschaften des Produkts. Texte für Varianten generiert unser Auslegungsprogramm Easy Product Finder.

Volumenstrom-Messeinrichtung in runder Bauform zur Messung von Volumenströmen in RLT-Anlagen, in sieben Nenngrößen.
Zur manuellen Bestimmung von Volumenströmen oder zur permanenten Überwachung des Istwertsignales. Inbetriebnahmebereites Gerät, bestehend aus dem Gehäuse mit dem Mittelwert bildenden Differenzdrucksensor.

Wirkdrucksensor mit 3 mm Messbohrungen, dadurch unempfindlich gegen Verschmutzung. Beidseitig Rohrstutzen mit Einlegesicke für Lippendichtung, passend für Luftleitungen nach EN 1506 oder EN 13180. Gehäuse-Leckluftstrom nach EN 1751, Klasse C.

Besondere Merkmale

- Messgenauigkeit ± 5 %
- Geringe Druckdifferenz von ca. 10 – 26 % vom gemessenen Wirkdruck

Materialien und Oberflächen

Ausführung verzinktes Stahlblech

- Gehäuse aus verzinktem Stahlblech
- Sensorrohre aus Aluminium

Ausführung Pulverbeschichtung (P1)

- Gehäuse aus verzinktem Stahlblech mit Pulverbeschichtung
- Sensorrohe aus Aluminium mit Pulverbeschichtung

Ausführung Edelstahl (A2)

- Gehäuse, Regelklappe und Achse aus Edelstahl 1.4301
- Sensorrohe aus Aluminium mit Pulverbeschichtung

Einbau und Inbetriebnahme

- Lageunabhängig (ausgenommen Geräte mit statischem Differenzdrucktransmitter)
- Anströmbedingungen beachten
- Statischer Differenzdrucktransmitter:
 Nullpunkt kontrollieren
 und gegebenenfalls justieren

Ausführungen

- Verzinktes Stahlblech
- P1: Oberfläche pulverbeschichtet, silbergrau (RAL 7001)
- A2: Edelstahl

Technische Daten

- Nenngrößen: 100 400 mm
- Volumenstrombereich:
 - 10 1680 l/s oder 36 6048 m³/h
- Wirkdruckbereich: Ca. 5 250 Pa
- Druckdifferenz der Messeinrichtung (Druckverlust):
 - 10 26 % vom gemessenen Wirkdruck
- Betriebstemperatur: 10 50 °C

Anbauteile

Volumenstrommessung mit statischem Differenzdrucktransmitter mit Istwertsignal zur Einbindung in die Gebäudeleittechnik.

- Versorgungsspannung 24 V AC/DC
- Signalspannungen 0 10 V DC oder 2 – 10 V DC
- TCU-LON-II:
- Einbindung über LonWorks Technologie
- EASYLAB: Über 0 10 V DC Signale oder über Erweiterungskarten (LonWorks, BACnet MS/TP, Modbus-RTU)

Auslegungsdaten

v	T _{re}	_3/L_1	
– v	[[]	n-/n	ı

Bestelloptionen VARYCONTROL

L	Ш	Jei	IC

VMR Volumenstrom-Messeinrichtung, rund

2 Material

Keine Eintragung: Verzinktes Stahlblech

P1 Oberfläche pulverbeschichtet

RAL 7001, silbergrau

A2 Edelstahlausführung

3 Flansch

Keine Eintragung: Ohne

☐ FL Flansch beidseitig

4 Nenngröße [mm]

□ 100

□ 125

□ 160

□ 200□ 250

□ 315

□ 400

5 Zubehör

Keine Eintragung: Ohne
□ **D2** Lippendichtung beidseitig

☐ **G2** Gegenflansch beidseitig

6 Anbauteile (Differenzdrucktransmitter)

Keine Eintragung: Ohne

☐ **B10** Dynamischer Differenzdrucktransmitter

 \square BB0 Statischer Differenzdrucktransmitter

7 Signalspannungsbereich

Für das Istwertsignal Nur für Anbauteil B10

□ **E0** 0 − 10 V

□ **E2** 2 – 10 V

Bestelloptionen
LABCONTROL
EASYLAB

1 Serie VMR	Volumenstrom-Messeinrichtung, rund	7 Gerä □ SC □ EC	tefunktion Erfassung Zuluft Erfassung Abluft
□ P1	Keine Eintragung: Verzinktes Stahlblech Oberfläche pulverbeschichtet, silbergrau (RAL 7001) Edelstahlausführung	□ E0 □ E2	Spannungssignal 0 – 10 V DC Spannungssignal 2 – 10 V DC Spannungssignal 2 – 10 V DC
	sch Keine Eintragung: Ohne Flansch beidseitig ngröße [mm]	□ T	Option 1: Stromversorgung Keine Eintragung: 24 V AC EM-TRF für 230 V AC EM-TRF-USV für 230 V AC, bietet unterbrechungsfreie Stromversorgung
☐ 100 ☐ 125 ☐ 160 ☐ 200 ☐ 250 ☐ 315 ☐ 400	e hör	□ L □ B □ M □ I	Option 2: Kommunikationsschnittstell Keine Eintragung: Ohne EM-LON für LonWorks FTT-10A EM-BAC-MOD-01 für BACnet MS/TP EM-BAC-MOD-01 für Modbus RTU EM-IP für BACnet IP, Modbus IP und Webserver EM-IP mit Echtzeituhr
□ D2 □ G2	Keine Eintragung: Ohne Lippendichtung beidseitig Gegenflansch beidseitig auteile (Regelkomponente) EASYLAB TCU3	□ z	Option 3: Automatischer Nullpunktabgleich Keine Eintragung: Ohne EM-AUTOZERO Magnetventil für automatischen Nullpunktabgleich

Bestelloptionen
LABCONTROL
EASYLAB

VMR	Volumenstrom-Messeinrichtung, rund	8 Erw
2 Mate	rial Keine Eintragung: Verzinktes Stahlblech	□ T
□ P1	Oberfläche pulverbeschichtet, silbergrau (RAL 7001)	
□ A2	Edelstahlausführung	
3 Flans		
□ FL	Keine Eintragung: Ohne Flansch beidseitig	□ B □ M □ I
_	größe [mm]	
☐ 100 ☐ 125		□R
□ 160 □ 200		
□ 250		□ Z
☐ 315 ☐ 400		□ ∠
□ 400		
5 Zube		
□ D 2	Keine Eintragung: Ohne Lippendichtung beidseitig	□ S
☐ G 2	Gegenflansch beidseitig	
6 Anba	uteile (Regelkomponente)	
ELAB	EASYLAB Regler TCU3	9 Bet
7 Gerät	tefunktion	
☐ FH-VS	Mit Einströmsensor Regelung Einströmgeschwindigkeit	
	Mit Frontschieber-Wegsensor SLineare Regelstrategie	
	V Sicherheitsoptimierte Regelstrategie	
	Mit Schaltstufen	
	für kundenseitige Schaltkontakte 2 Schaltstufen	Ergän
_	P 3 Schaltstufen	
•-	Ohne Aufschaltung	
☐ FH-F	Volumenstrom-Festwert	□ BE-□ BE-

8 Erweiterungsmodule Option 1: Versorgungsspannung Keine Eintragung: 24 V AC EM-TRF für 230 V AC EM-TRF-USV für 230 V AC, bietet unterbrechungsfreie Stromversorgung Option 2: Kommunikationsschnittstelle Keine Eintragung: Ohne EM-LON für LonWorks FTT-10A EM-BAC-MOD-01 für BACnet MS/TP EM-BAC-MOD-01 für Modbus RTU EM-IP für BACnet IP. Modbus IP und Webserver EM-IP mit Echtzeituhr Option 3: Automatischer Nullpunktabgleich Keine Eintragung: Ohne **EM-AUTOZERO** Magnetventil für automatischen Nullpunktabgleich Option 4: Beleuchtungsschaltung Keine Eintragung: Ohne **EM-LIGHT Anschlussbuchse** für die Beleuchtung, schaltbar an

Betriebswerte [m³/h oder l/s]

Abhängig von der Gerätefunktion

der Bedieneinheit (nur in Kombination mit EM-TRF oder EM-TRF-USV)

 $\begin{array}{lll} \text{VS: } \dot{V}_{\text{min}} - \dot{V}_{\text{max}} \\ \text{DS: } \dot{V}_{\text{min}} - \dot{V}_{\text{max}} \\ \text{DV: } \dot{V}_{\text{min}} - \dot{V}_{\text{max}} \\ \text{2P: } \dot{V}_{1} / \dot{V}_{2} \\ \text{3P: } \dot{V}_{1} / \dot{V}_{2} / \dot{V}_{3} \\ \text{F: } \dot{V}_{1} \end{array}$

Ergänzende Produkte

Bedieneinheit für Laborabzugsregler zur Funktionsanzeige der Regelung nach EN 14175

□ BE-SEG-** Zweizeichenanzeige□ BE-LCD-01 40-Zeichen-Display

Volumenstrommessung Grundlagen und Definitionen

- Produktauswahl
- Hauptabmessungen
- Definitionen
- Auslegung und Auslegungsbeispiel

Produktauswahl

	Serie			
	VMR	VME	VMRK	VMLK
Anlagenart				
Zuluft	•	•	•	•
Abluft	•	•	•	•
Luftleitungsanschluss				
Rund	•		•	•
Rechteckig		•		
Volumenstrombereich				
Bis [m³/h]	6048	36360	6048	1854
Bis [l/s]	1680	10100	1680	515
Luftqualität				
Gefiltert	•	•	•	•
Büroabluft	•	•	•	•
Verschmutzt	0	0	•	•
Kontaminiert	0	0	•	•
Volumenstrommessung				
Manuell	•	•	•	
Automatisch	0	0	0	•
Besondere Bereiche				
Laboratorien, Reinräume, Operationssäle (EASYLAB, TCU-LON II)	•	•	•	•
•	Möglich			
0	Bedingt möglich: In Verbindung mit beständiger Gerätevariante und/oder bestimmtem Differenzdrucktransmitter			
	Nicht Möglich			

Volumenstrommessung

Grundlagen und Definitionen

Hauptabmessungen

ØD [mm]

Regelgeräte aus Stahlblech:

Außendurchmesser des Anschlussstutzens Regelgeräte aus Kunststoff:

Innendurchmesser des Anschlussstutzens

$\emptyset D_1$ [mm]

Lochkreisdurchmesser von Flanschen

$ØD_2$ [mm]

Außendurchmesser von Flanschen

$\emptyset D_4$ [mm]

Innendurchmesser der Schraubenlöcher von Flanschen

L [mm]

Gerätelänge einschließlich Anschlussstutzen

L₁ [mm]

Gehäuse- oder Dämmschalenlänge

B [mm]

Breite der Luftleitung

B₁ [mm]

Lochabstand im Luftleitungsprofil (Breite)

B₂ [mm]

Außenabmessung des Luftleitungsprofils (Breite)

B_3 [mm]

Gerätebreite

H [mm]

Höhe der Luftleitung

H₁ [mm]

Lochabstand im Luftleitungsprofil (Höhe)

H_2 [mm]

Außenabmessung des Luftleitungsprofils (Höhe)

H_3 [mm]

Gerätehöhe

n[]

Anzahl Schraubenlöcher von Flanschen

T [mm]

Flanschdicke

m [kg]

Gerätegewicht (Masse) einschließlich Anbauteile zur automatischen Differenzdruckmessung

Definitionen

\dot{V}_{Nenn} [m³/h] und [l/s]

Nennvolumenstrom (100 %)

\dot{V}_{min} [m³/h] und [l/s]

Volumenstrom

Δ['] [± %]

Volumenstromgenauigkeit der gemessenen Volumenströme

C-Wert [m³/h] und [l/s]

Gerätekonstante für eine Luftdichte von 1,2 kg/m³

Δp_w [Pa]

Wirkdruck

Δp_{st} [%]

Statische Druckdifferenz,

in Relation zum gemessenen Wirkdruck

Ausführungen

Verzinktes Stahlblech

- Luftführendes Gehäuse aus verzinktem Stahlblech
- Im Luftstrom befindliche Teile, wie bei der Serie beschrieben
- Außenliegende Bauteile, beispielsweise Konsolen und Deckel, in der Regel aus verzinktem Stahlblech

Pulverbeschichtete Oberfläche (P1)

- Luftführendes Gehäuse aus verzinktem Stahlblech, pulverbeschichtet RAL 7001, silbergrau
- Im Luftstrom befindliche Teile pulverbeschichtet oder Kunststoff
- Fertigungsbedingt eventuell einige im Luftstrom liegende Teile aus Edelstahl oder Aluminium pulverbeschichtet
- Außenliegende Bauteile, beispielsweise Konsolen und Deckel, in der Regel aus verzinktem Stahlblech

Edelstahl (A2)

- Luftführendes Gehäuse aus Edelstahl Typ 1.4201
- Im Luftstrom befindliche Teile pulverbeschichtet oder Edelstahl
- Außenliegende Bauteile, beispielsweise Konsolen und Deckel, in der Regel aus verzinktem Stahlblech

Auslegung anhand dieses Kataloges

Die Auslegung der Volumenstrom-Messeinrichtungen anhand dieses Kataloges erfolgt mit Hilfe der strömungstechnischen Daten. Zu allen Nenngrößen sind die Volumenstrombereiche angegeben.

Auslegungsbeispiel

Gegeben

 $\dot{V}_{max} = 280 \text{ l/s } (1010 \text{ m}^3/\text{h})$

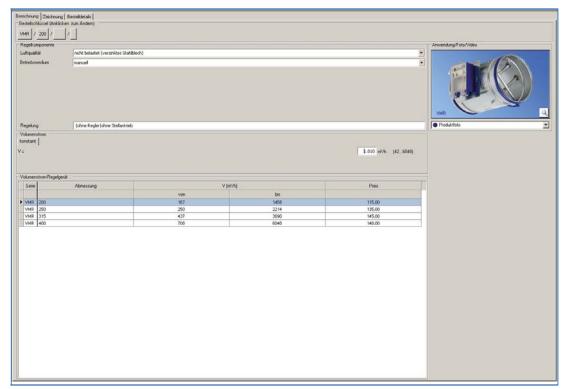
Schnellauslegung

VMR/200

 $C = 25,5 \text{ l/s} (92 \text{ m}^3/\text{h})$

 $\Delta p_{st} = 19 \%$

 $\Delta p_w = 121 \text{ Pa}$


 $\Delta p_{st} = 23 \text{ Pa} (121 \text{ Pa} \times 0.19)$

Easy Product Finder

Mit dem Easy Product Finder können Sie das Produkt mit Ihren projektspezifischen Daten dimensionieren.

Den Easy Product Finder finden Sie auf unserer Website.

4